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Abstract

BLAST is a widely used software toolkit for genomic se-

quence search. mpiBLAST is a freely available, open-

source parallelization of BLAST that uses database seg-

mentation to allow different worker processors to search (in

parallel) unique segments of the database. After search-

ing, the workers write their output to a filesystem. While

mpiBLAST has been shown to achieve high performance

in clusters with fast local filesystems, its I/O processing re-

mains a concern for scalability, especially in systems hav-

ing limited I/O capabilities such as those using distributed

filesystems spread across a wide-area network.

Thus, we presentParaMEDIC—an environment that decou-

ples computation and I/O in distributed environments for

applications such as mpiBLAST and dramatically reduces

I/O overhead through metadata processing. Specifically, for

mpiBLAST, ParaMEDIC partitions worker processes into

compute and I/O workers. Compute workers, instead of di-

rectly writing output to the distributed filesystem, convert

their output to metadata and send it to I/O workers. I/O

workers, which physically reside closer to the actual stor-

age, then process this metadata to re-create the actual out-

put and write it to the filesystem. This approach allows

ParaMEDIC to cut down on the I/O time, thus accelerating

mpiBLAST by as much as 25-fold in some cases.

Keywords: mpiBLAST, I/O, distributed file-system

1 Introduction

Many computational biology tools and applications use nu-

cleotide and protein sequence-searches to find similarities
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between different species of organisms. These searches en-

able biologists to find sibling species from a common ances-

tor. In 2003, sequence matching helped biologists to iden-

tify the similarities between the recent SARS virus and the

more well-studied coronaviruses, thus enhancing the biolo-

gists’ ability to combat the new virus.

Given the importance of sequence searches, researchers

have designed a number of tools to perform sequence search

in an efficient manner. Among the most widely used

sequence-search tools is the Basic Local Alignment Search

Tool (BLAST) from the National Center for Biotechnology

Information (NCBI). BLAST, a multithreaded but sequen-

tial tool, identifies regions of local similarity between se-

quences. It compares a (nucleotide or protein) sequence

query to a database of known sequences and calculates the

statistical significance of the matches.

mpiBLAST [5, 7] is a freely available, open-source paral-

lelization of NCBI BLAST. With more than 40,000 down-

loads in three years, mpiBLAST has become an inte-

gral component of many high performance cluster distri-

butions [3, 4, 10, 11, 14, 15, 16, 17] and is an officially

supported application at various high-performance comput-

ing facilities such as the System X [18] and the NSF Tera-

Grid [20]. The overall software architecture of mpiBLAST

follows a master-worker model. The master fragments the

sequence database across multiple nodes so that each frag-

ment fits in memory. Each worker process then searches its

unique portion of the database independently of the other

workers. Once the search is complete, the results are merged

and written out to a central file for later examination or post-

processing by the biologist. While this model works well

for clusters with a fast local filesystem, it does not work

well when the filesystem is distributed across a wide-area

network [8], which is the case in facilities such as the NSF

TeraGrid and the distributed and encrypted compute envi-

ronment between Argonne National Laboratory (ANL) and

Virginia Tech (VT) over Internet2.
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Figure 1: TeraGrid Architecture

NSF TeraGrid (Figure 1) is a distributed computing facility

spread across various sites in the U.S. including the Uni-

versity of Chicago (Illinois), San Diego Supercomputing

Center (California), Purdue University (Indiana), Texas Ad-

vanced Computing Center (Texas), and others. The San

Diego Supercomputing Center (SDSC) also doubles up as

a host for a global parallel filesystem (GPFS) that is visible

and usable by all TeraGrid compute servers. All sites are

connected using high-bandwidth (30 Gbps) optical links,

but the large physical distance between the sites forces the

latency to be high (several milliseconds) as well. Scientists

use the computational power available at different locations

to run searches and then write the final output to the glob-

ally shared filesystem to be viewed or postprocessed at a

later time. While such a system provides good computa-

tional capability, for I/O rich applications, the distributed

filesystem can form a significant bottleneck. For the dis-

tributed compute environment between ANL and VT, the

case is even more severe because of a slower network link

(1 Gbps) and encryption of data sent out over the wide-area

network, which adds a substantial overhead.

Thus, in this paper, we propose ParaMEDIC: Parallel

Metadata Environment for Distributed I/O and Computing,

a novel environment that decouples the computation and

I/O for applications such as mpiBLAST in order to im-

prove performance in distributed environments. Specifi-

cally, ParaMEDIC divides the worker processes into two

groups: compute workers and I/O workers. The compute

workers reside on the compute cluster (as they did earlier),

while the I/O workers reside physically closer to the actual

storage. For example, in the TeraGrid infrastructure, the

compute workers can reside on any compute facility, while

I/O workers always reside in SDSC.

When a biologist requests that a query be searched, the com-

pute workers act in a manner almost identical to their typi-

cal approach. However, instead of directly writing the out-

put to the filesystem, the workers process the output, gen-

erate metadata about the output and write the metadata to

the filesystem. This metadata is several orders of magnitude

smaller in size than the actual output, thus significantly re-

ducing the I/O time taken by the compute workers. Once the

metadata is written, the I/O workers perform a small amount

of additional processing of the metadata to generate the final

output and write it to the filesystem. Since the I/O workers

are physically closer to the actual storage, writing the final

output is substantially faster than having the compute work-

ers write the final output.

We note that the total computation performed by

ParaMEDIC is slightly higher than mpiBLAST because it

first requires processing of the output to create metadata and

then requires postprocessing of the metadata to regenerate

the actual output at the I/O node. However, ParaMEDIC

has the potential to significantly reduce the amount of I/O

cost, especially in systems that have limited I/O capabili-

ties. Thus ParaMEDIC trades a small amount of additional

computation to dramatically reduce the I/O overhead.

Together with the detailed description of the new

ParaMEDIC approach, this paper also presents evaluations

of ParaMEDIC on three systems. The first system is a lo-

cal cluster connected with a dedicated 10 Gbps network that

also has the ability to vary both bandwidth and latency be-
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tween any two nodes. We use this system to emulate var-

ious forms of high-latency and high-bandwidth distributed

computing infrastructures. The second system is a secure

encrypted filesystem hosted between ANL and VT over the

Internet2 connection (1 Gbps network). This is a research

infrastructure that is used to utilize compute resources from

both sites in a convenient manner. The third system uses the

University of Chicago and San Diego Supercomputing Cen-

ter facilities of the TeraGrid infrastructure (30 Gbps network

connectivity). Our experimental results demonstrate that

ParaMEDIC achieves order-of-magnitude improvements in

performance over the original mpiBLAST implementation

in all three environments. Specifically, for the TeraGrid in-

frastructure we observed a 5-fold improvement and for the

encrypted ANL-VT filesystem, we observed a 25-fold im-

provement in overall performance.

The remaining paper is organized as follows. In Section 2,

we present a brief overview of mpiBLAST. We describe the

ParaMEDIC approach to improve the I/O performance of

mpiBLAST in Section 3. Experimental results on the local

cluster as well as the various real systems are presented in

Section 4. We present prior literature related to our work in

Section 5 and the concluding remarks in Section 6.

2 Overview of mpiBLAST

In this section, we provide a brief overview of mpiBLAST.

More details can be found in [5, 7].

With the size of the GenBank sequence databases doubling

every 12 months [2, 9] and the computational horsepower

of a single processor doubling only every 18–24 months,

the growth rate of the databases has been fast outstripping

the ability of a single processor to keep up. For instance,

in 2002, searching for the 300-KB E. chrysanthemi in the

NT database took 22.4 hours (80,775 seconds); by 2005,

the same search but with an updated NT database took 49.1

hours (176,880 seconds) to complete. These trends moti-

vated the development of a parallelized version of BLAST.

Because independent sequential queries can be run in par-

allel, the easiest (and trivial) way to parallelize BLAST is

via query segmentation—each compute node searches its

own unique query against its copy of the entire sequence

database. However, the fact that entire sequence databases

cannot fit into memory means that the operating system

must swap pages to and from disk during the sequence

search, thus adding a tremendous amount of overhead to the

computation. This shortcoming led to an unconventional

way of parallelizing BLAST—database segmentation, as

done in mpiBLAST [5, 7].

Database segmentation fragments a database across multi-

ple nodes to ensure that each fragment fits in memory. Then,

the master node scatters an identical query to each worker

node to search against its unique portion of the database, as

shown on the left-hand side of Figure 2. Once the searches

complete, the results are gathered and merged at the mas-

ter process and the output written out to a central file, as

shown on the right-hand side of Figure 2. The execution

flow follows a scatter-search-merge-output pattern that is

implemented within a master-worker parallelization model.

Database segmentation offers two primary advantages: (i)

the time to distribute a database fragment is less than the

time to distribute a complete copy of the database, and (ii)

because the database fits in the aggregate memory of a par-

allel machine such as a cluster, superlinear speedups can be

obtained due to the absence of disk I/O during the scatter,

search and merge phases. However, disk I/O during the out-

put phase when the result has to be written to a filesystem

is inevitable. To this end, the performance of mpiBLAST

heavily depends on the capability of the filesystem. Conse-

quently, filesystems with limited I/O capabilities can signif-

icantly hamper the overall performance of mpiBLAST.

3 Design Overview

In this section, we present a detailed description of the

ParaMEDIC framework. We first describe the overall

framework in Section 3.1, followed by details of the genera-

tion of the metadata by the compute workers in Section 3.2.

We then conclude the section with a description of how the

postprocessing is performed by the I/O workers to regener-

ate the final output in Section 3.3.
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3.1 The ParaMEDIC Framework

ParaMEDIC provides a two-tiered hierarchical framework

for decoupling computation and I/O in mpiBLAST. The up-

per tier consists of two processes, compute manager and

I/O manager, while the lower tier consists of two groups

of processes – compute workers and I/O workers. The ac-

tual sequence search is handled by the compute workers.

Once the output is generated, the compute master converts

this output initially to raw metadata, and then processes and

compresses it to form the final metadata. It then writes the

final metadata to the filesystem and sends a signal to the I/O

master. The I/O master, upon receiving a signal from the

compute master, uses the I/O workers to process the meta-

data and generate the final output.

3.1.1 Trading Computation and I/O

As we can observe in the ParaMEDIC framework, the

amount of computation required is higher than what is re-

quired by the original mpiBLAST implementation. For ex-

ample, after the output is generated by the compute work-

ers, it has to be processed to generate the metadata, sent to

the I/O master, and again reprocessed by the I/O workers

to regenerate the final output. However, such metadata pro-

cessing potentially allows the the I/O cost to be significantly

reduced. In other words, the ParaMEDIC framework aims

at trading additional computation for reduced I/O cost.

The ParaMEDIC framework is very generic and tunable

with respect to the amount of metadata processing required.

The metadata can be a simple and basic compression of the

actual output, a complex application-specific data structure

or any other format that can be used to regenerate the final

output. Obviously, depending on the kind of metadata that is

to be generated, the metadata processing scheme will have a

different amount of computational complexity and I/O over-

head. For example, in a simple compression scheme, the

amount of additional postprocessing required is minimal,

but the I/O cost might still be high. On the other hand,

with a complex application-specific data structure genera-

tion scheme, the amount of additional postprocessing re-

quired to regenerate the final output might be high, but the

I/O cost will be very low. The right scheme to use will, of

course, depend on the number of postprocessing compute

resources available, as we will describe in Section 3.1.2.

3.1.2 Managing Compute and I/O Worker Processes

Managing the compute and I/O worker processes in

ParaMEDIC essentially determines the tradeoff in the

amount of time spent in computation versus the amount

of time saved in I/O. In general, since the I/O worker pro-

cesses are restricted to the cluster that hosts the filesystem,

the number of I/O workers that are available is restricted.

For example, in a distributed environment hosting 10,000

processors, only 1000 processors might reside on the same

cluster that hosts the filesystem. Thus, in this case, it is

ideal to maintain a 10:1 ratio between the number of com-

pute workers and the number of I/O workers. Depending on

the ratio, the appropriate metadata processing scheme needs

to be picked as described in Section 3.1.1.

Irrespective of the scheme used, it is imperative that the

ParaMEDIC approach use algorithms that can generate

metadata from the result and regenerate the result from the

metadata with minimal additional processing requirements.

In other words, the framework has to ensure that the post-

processing cost required to process the metadata and gener-

ate the final output is significantly less than the actual com-

putation needed to search for the query sequence within the

database.

In this paper, we demonstrate performance results only

based on data structures specific to the mpiBLAST appli-

cation. Other schemes including basic data compression are

deferred to future work.

3.2 Metadata Processing for mpiBLAST

Several sequence databases use unique identifiers for each

sequence in the database. For the nucleotide database, for

example, GenBank Identifiers (GIs) are used to represent

the different sequences. These GIs, though unique for each

sequence, are not ordered in the database. The result that

is generated from mpiBLAST typically consists of the se-

quences themselves, together with a significant amount of

additional information such as details about the software

package, additional information about each sequence, pat-

tern matches that BLAST discovered for each sequence, the

e-value representing how close the match was for each se-

quence, and various other statistics.

ParaMEDIC parses through the results generated by the

mpiBLAST compute workers and extracts the GI informa-

tion for each matching sequence in the database. Once

the GI information for all the matching sequences in the

database for each query sequence is identified, this data is

compressed by discarding duplicate GI values (for example,

when two query sequences match the same sequence in the

database) and sent to the I/O workers. Depending on the

query, this compressed GI information can be nearly three

to four orders of magnitude smaller than the actual output.

We note that as the number of query sequences increase

or as the number of result sequences required by the user

increases, the metadata generated as well as the time for

generating and processing the metadata increases. Thus, at

some stage, the additional cost of metadata processing be-

comes greater than the saving in I/O time that is achievable.

In order to address this, ParaMEDIC finds the size of the

metadata that is created and uses a tunable threshold pa-

rameter to determine whether decoupled computation and

I/O can provide any benefit. If the metadata size is larger

than the threshold, the scheme falls back to the regular mpi-

BLAST implementation.
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3.3 I/O Post-Processing

I/O postprocessing is handled by the I/O workers in

ParaMEDIC. The postprocessing is comprised of two pri-

mary components—database creation and query search. In

the first component, the I/O master creates a new temporary

database based on the matched segments that were found by

the compute workers. This temporary database is typically

much smaller than the original database. For example, in the

default configuration, if a single query sequence is provided

by the user, while the actual database has about 5 million

sequences the temporary database will have at most 500 se-

quences, i.e., 0.01% of the original size. Once the temporary

database is created, the I/O workers recompute the original

query sequences against this temporary database to generate

the final output. Since the temporary database is typically

very small, this search time is minimal.

The size of the metadata generated directly impacts the size

of the temporary database. Thus, as the number of unique

sequences that match the query sequences increases (either

as the number of query sequences increases or the number

of matches requested by the user increases), the size of the

temporary database, and consequently, the I/O postprocess-

ing time increases. Again, the threshold (mentioned in Sec-

tion 3.2) ensures that the metadata size in this scheme is

small and thus the ParaMEDIC scheme beneficial.

4 Performance Evaluation

This section presents a performance evaluation of

ParaMEDIC-enhanced mpiBLAST (hereafter referred

to as simply ParaMEDIC) and compares it with the existing

mpiBLAST implementation. Specifically, we evaluate

the two schemes in a local cluster emulating various

distributed-computing infrastructures in Section 4.1. Eval-

uations on a distributed testbed between Argonne National

Laboratory and Virginia Tech over the Internet2 network

connection are presented in Section 4.2. Evaluations on

the TeraGrid infrastructure with nodes from the Univer-

sity of Chicago and San Diego Supercomputing Center

participating in the experiment are presented in Section 4.3.

All experiments have been performed with the Nucleotide

(NT) database, which is larger than 20GB and contains over

5 million sequences.

4.1 Local Cluster Evaluation

In this section, we compare the performance of the

ParaMEDIC scheme with that of the existing mpiBLAST

implementation on a local cluster, which emulates various

distributed-computing infrastructures.

4.1.1 Experimental Testbed for the Local Cluster

The testbed used in this configuration consists of 24 nodes,

each equipped with dual-processor, dual-core (4 cores)

Opteron 2220 2.8 GHz processors. Each processor has

2 MB of L2-cache (1 MB local L2 cache for each core).

The nodes were equipped with 4 GB of 667-MHz DDR2

SDRAM and four SATA disks using a software RAID0. The

network used to connect these machines was the NetEffect

NE010 10-Gigabit Ethernet iWARP adapters. For the ex-

periments, however, they were used as regular 10-Gigabit

Ethernet adapters with host-based TCP/IP without using the

iWARP support. The nodes were installed with Fedora Core

5



6 Operating System. To emulate the various distributed-

computing infrastructures, we used the NetEm software

package [1]; this package allows data from a network to be

delayed without hampering the overall throughput, thus em-

ulating high-latency, high-bandwidth distributed-computing

environments.

The default configuration used in this section is a 50KB

query file, a network delay of 50ms, 80 worker processes

and 500 output sequences. We vary each of these param-

eters individually and keep the remaining parameters con-

stant (assigned to their default configuration).

4.1.2 High-Bandwidth, High-Latency Networks

In this section, we analyze the impact of distributed envi-

ronments connected with high-latency, high-bandwidth net-

works on the performance of ParaMEDIC and basic mpi-

BLAST. For this experiment, we divide the local cluster

into two logical subclusters. While all the nodes are con-

nected with a 10 Gbps network, we artificially delay the

communication between nodes belonging to different sub-

clusters. The socket buffer size used is set to at least be

equal to the bandwidth-delay product of the network so as to

maximize the performance the network subsystem can pro-

vide. Four nodes in the second subcluster (each node with 4

SATA disks configured as a software RAID0) host a PVFS2

filesystem visible to all nodes in both the subclusters. This

setup represents a scenario similar to the TeraGrid where

two clusters are geographically distributed, and the second

cluster also doubles up to host a filesystem that is visible

from both clusters.

For the evaluation, both ParaMEDIC and mpiBLAST use 20

dual-processor, dual-core nodes hosting a total of 80 worker

processes. For mpiBLAST, all these processes are hosted in

the first subcluster. For ParaMEDIC, however, the worker

processes are divided into 76 compute workers (which are

hosted on the first subcluster) and 4 I/O workers (which are

hosted on the second subcluster)—a 19:1 ratio of compute

to I/O workers.
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Figure 4: Impact of High-Bandwidth High-Latency Networks

As shown in Figure 4, when the network delay between

the two subclusters is low, the original mpiBLAST outper-

forms ParaMEDIC. This result is expected because of two

reasons: (i) ParaMEDIC performs additional computation

for converting the search results to metadata and converting

the metadata back to the final output and (ii) the number of

compute resources that ParaMEDIC uses for the actual com-

putation is only 76 cores, as opposed to the 80 cores used

by mpiBLAST—the remaining 4 cores in ParaMEDIC are

used for the postprocessing. As the network delay increases,

however, ParaMEDIC starts to outperform mpiBLAST. In

fact, for a network delay of 100 ms, ParaMEDIC outper-

forms mpiBLAST by a factor of 2.26. This improvement

in performance is attributed to two factors. First, the high

network latency causes degradation in the filesystem opera-

tions that are required whenever data needs to be written or

read from the server. Second, the total amount of data writ-

ten in mpiBLAST over the I/O subsystem is much higher

as compared to ParaMEDIC, since ParaMEDIC writes only

metadata that is significantly smaller than the final results to

the filesystem.

To further understand these results, we show the perfor-

mance breakdown of the time taken by mpiBLAST and

ParaMEDIC in Figure 5. As shown in Figure 5(a), for mpi-

BLAST, as the network delay increases, the I/O time in-

creases very quickly. Thus, though the computation time

does not change much, the overall execution time suffers.

On the other hand, for ParaMEDIC (Figure 5(b)), the com-

putation time, the I/O time, and the postprocessing time re-

quired to handle the metadata are fairly constant for all val-

ues of network delays. This result is anticipated because the

only component in ParaMEDIC that would be affected by

the network latency is the postprocessing, since it requires

moving the metadata from the compute workers to the I/O

workers. And because the metadata amount is very small

(few KB), this time typically does not make any difference

to either the postprocessing time or the overall execution

time of the application.

4.1.3 Varying the Number of Worker Processes

This section analyzes the performance of mpiBLAST and

ParaMEDIC with varying numbers of worker processes.

The total number of worker processes allotted to each

scheme is the same. For ParaMEDIC, however, four of these

processes are always allocated as I/O workers in our exper-

iments. In other words, in this section, we study the impact

of the different ratios for the compute workers to I/O work-

ers on the performance of ParaMEDIC.

Figure 6 shows the performance of the two schemes with

varying number of worker processes with a constant net-

work delay of 50ms. As shown in the figure, when the

number of worker processes is high, ParaMEDIC outper-

forms mpiBLAST. However, as the number of worker pro-

cesses decreases, the performance of ParaMEDIC degrades
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Figure 6: Varying the Number of Worker Processes

faster than that of mpiBLAST. For less than 24 worker pro-

cesses (5:1 ratio of compute-to-I/O workers), we see that

mpiBLAST outperforms ParaMEDIC.

This behavior is related to the number of compute workers

each scheme has for performing the actual sequence search,

as illustrated in Figure 7. Specifically, when the total num-

ber of worker processes available is N, ParaMEDIC uses

only (N-4) of them for the sequence search. The remain-

ing 4 processes are used for I/O processing. Thus, when

N is very large, the increase in computation time caused

by using lesser workers (approximately N / (N - 4)) is not

very high. However, when N is small, the increase in com-

putation time can be substantial. For example, when N is

8 processes, ParaMEDIC uses only 4 processes for the se-

quence search while mpiBLAST uses 8. Thus, the com-

putation time taken by ParaMEDIC is nearly twice that of

mpiBLAST. This overshadows any benefit in the I/O time

ParaMEDIC can bring about, causing it to deliver worse

performance than mpiBLAST.

This behavior is, of course, tunable by using different

metadata processing schemes as described in Section 3.1.1.

However, as described earlier, in this paper we only study

the performance based on data structures specific to the mpi-

BLAST application. Other schemes (such as basic com-

pression), which require lesser postprocessing and hence

can deal with smaller compute-to-I/O worker ratios, are de-

ferred to future work.

4.1.4 Varying the Number of Sequences Requested

In this section, we vary the number of sequences requested

(both input query and output result sequences) and study

7
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Figure 8: Varying the Number of Requested Sequences: (i) Input Query Sequences and (ii) Output Result Sequences

their impact on the performance of the two schemes. Vary-

ing the number of sequences in the input query increases the

search time for both mpiBLAST and ParaMEDIC. How-

ever, it is also expected to impact the postprocessing time

for ParaMEDIC, thus affecting it more than mpiBLAST. At

the same time, an increase in the input query size also typ-

ically results in more output. This, on the other hand, can

potentially impact mpiBLAST more than ParaMEDIC.

Figure 8(a) shows the performance of the two schemes with

increasing input query sizes. We see that while the in-

crease in the input query size increases the execution time of

ParaMEDIC, it has a more dramatic effect on mpiBLAST.

Thus, as the query size increases, the performance differ-

ence between the two schemes increases, with ParaMEDIC

outperforming mpiBLAST by about 66% for a 100KB

query file size.

Figure 8(b) shows the impact of increasing the number of

requested output result sequences. The number of output

result sequences does not impact the computation much, but

can affect the amount of I/O. Thus, because the I/O cost

for ParaMEDIC is very low, its performance does not vary

much. On the other hand, since the I/O cost for mpiBLAST

is very high, its performance is affected significantly.

4.1.5 Impact of Encrypted Filesystems

For distributed filesystems that span unsecure network con-

nections (such as the Internet), data encryption is commonly

used to protect transmitted data in several environments

such as government national laboratories and other secure

facilities. Figure 9 shows the impact of such data encryption

on the performance of the two schemes. As shown in the

figure, the performance of the two schemes is similar to the

case where there is no file encryption, except that the perfor-

mance of mpiBLAST degrades faster. This is attributed to

the data encryption overhead. That is, since all the data that

is being transmitted has to be encrypted and the amount of

data transmitted by mpiBLAST over the unsecure network

is significantly larger than ParaMEDIC, encryption affects
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Figure 9: Impact of Encrypted Filesystems

mpiBLAST more significantly as compared to ParaMEDIC.

4.2 Distributed Setup between ANL and VT

In this section, we evaluate the performance of mpiBLAST

and ParaMEDIC on a distributed system between ANL and

VT connected over Internet2. Since the network connecting

the two clusters is not secure, data encryption is used to

protect the data transmitted.
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Figure 10: ANL-VT Encrypted Filesystem
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As shown in Figure 10, ParaMEDIC significantly outper-

forms mpiBLAST in this environment. Further, as the query

size increases, the performance difference between the two

schemes increases. For a query size of 100 KB, we ob-

serve more than a 25-fold improvement in performance for

ParaMEDIC as compared to mpiBLAST. This difference is

attributed to multiple aspects. First, given the shared net-

work connection between the two sites, the effective net-

work performance achievable is usually lower than within

the cluster. Thus, with mpiBLAST transferring the entire

output result over this network, its performance would be

heavily impacted by the network performance. Second,

since data communicated is encrypted, mpiBLAST also has

to pay the penalty for such encryption. Though ParaMEDIC

also pays such data encryption penalty, the amount of data it

transfers is significantly lesser, and hence the penalty is less

as well. Third, the distance between the two sites causes the

communication latency to be high. Thus, filesystem opera-

tions tend to take a large amount of time, resulting in further

loss of performance.

4.3 TeraGrid Infrastructure

The TeraGrid infrastructure represents a widely used real

environment for several compute- and I/O-intensive appli-

cations including mpiBLAST. As described in Section 1,

a GPFS-based distributed filesystem is hosted at SDSC,

which can be accessed from all facilities, and forms a part

of the TeraGrid facility. Since TeraGrid is a dedicated facil-

ity, it does not utilize any encryption of the data exchanged

between sites.

For the experiments in this section, we utilized the nodes at

the University of Chicago and SDSC. The I/O workers in

ParaMEDIC are always scheduled at SDSC because of its

close proximity to the actual storage. The compute workers,

however, are scheduled at the University of Chicago.
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Figure 11: Evaluation on the TeraGrid Infrastructure

Figure 11 illustrates the performance of mpiBLAST and

ParaMEDIC on the TeraGrid infrastructure. While the final

output is written to the same global filesystem in both cases,

mpiBLAST suffers from the fact that the compute workers

are performing the I/O for the output results. Since they

reside on a remote cluster as compared to the actual stor-

age, their I/O performance is limited resulting in an over-

all degradation in execution time. For ParaMEDIC, on the

other hand, since the I/O workers are performing the I/O for

the output results, the amount of time taken is significantly

smaller. For a query file size of 100 KB, ParaMEDIC out-

performs mpiBLAST by a factor of about five times.

Figure 12 shows the performance breakdown of the two

schemes. As shown in the figure, as the query size increases,

the computation time for both mpiBLAST and ParaMEDIC

increases. However, for mpiBLAST, the I/O time also in-

creases very quickly while for ParaMEDIC there is essen-

tially no difference in the I/O time with increasing query

size. This result shows that ParaMEDIC is only minimally

impacted by the limited I/O of the subsystem and that it ef-

ficiently distributes its worker processes across the system

to achieve high performance.

5 Related Work

Alleviating the I/O bottleneck in parallel BLAST has been a

subject of ongoing research. pioBLAST, is a recent work by

our group that offloads I/O from the master and distributes

it among the workers [12]. By having each worker write

a portion of the output file in parallel, the I/O time is re-

duced. This, however, is efficient only when the filesystem

can effectively handle concurrent parallel writes. For dis-

tributed filesystems where the inter-cluster communication

is a bottleneck (due to high latency and/or limited band-

width), however, this is not as beneficial. Further, the syn-

chronization operations of a parallel filesystem will hinder

performance for filesystems connected across a WAN.

ScalaBLAST [13] is another genome sequence search tool

that is optimized for distributed as well as shared-memory

systems. Though this paper uses ParaMEDIC with mpi-

BLAST, the concept is generic and can be used with other

sequence search tools, including ScalaBLAST, as well.

Outside the realm of parallel BLAST, two other approaches

to decoupling computation and I/O are MapReduce and

TCP Linda. MapReduce is a programming model for pro-

cessing and generating large datasets [6]. TCP Linda is a

virtual shared-memory system whereby parallel processes

execute simultaneously and exchange data by generating,

reading, and consuming data objects [19]. Both MapRe-

duce and TCP Linda decouple the different phases of an al-

gorithm and transfer intermediate objects to the appropriate

processes. However, unlike ParaMEDIC, neither of these

approaches does any conversion of output to balance the I/O

time with additional computational requirements.

In summary, the ParaMEDIC framework derives a number

of insights from existing literature and extends them in a

9
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Figure 12: TeraGrid Infrastructure Performance Breakup: (i) mpiBLAST and (ii) ParaMEDIC

novel and interesting manner to achieve high performance

for I/O rich applications such as mpiBLAST.

6 Conclusions and Future Work

mpiBLAST is an open source, freely available paralleliza-

tion of BLAST, a widely used software for genome se-

quence searching. In spite of several previous enhance-

ments, I/O processing in mpiBLAST is still a concern, es-

pecially in environments that use distributed filesystems

with limited I/O capabilities. In this paper, we presented

ParaMEDIC—an environment that decouples computation

and I/O in applications such as mpiBLAST and dramatically

reduces I/O costs using metadata processing. Specifically,

for mpiBLAST, ParaMEDIC separates the worker processes

into compute and I/O workers and schedules I/O workers

physically closer to the actual storage. The compute work-

ers, instead of directly writing the entire result to the filesys-

tem, write metadata information corresponding to the out-

put. The I/O workers use this metadata to recompute the

final output results and write it to the filesystem. We have

demonstrated that ParaMEDIC can achieve several-fold im-

provement compared to mpiBLAST in some cases.

As future work, we would like to further generalize the

ParaMEDIC framework to allow multiple metadata formats

with different tradeoffs for additional computation and re-

duced I/O. We also plan on studying the metadata patterns

that are used by other applications as well.
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